skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Polsin, D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We describe a method for laser-driven planar compression of crystalline hydrogen that starts with a sample of solid para-hydrogen (even-valued rotational quantum number j) having an entropy of 0.06 kB/molecule at 10 K and 2 atm, with Boltzmann constant kB. Starting with this low-entropy state, the sample is compressed using a small initial shock (<0.2 GPa), followed by a pressure ramp that approaches isentropic loading as the sample is taken to hundreds of GPa. Planar loading allows for quantitative compression measurements; the objective of our low-entropy compression is to keep the sample cold enough to characterize crystalline hydrogen toward the terapascal range. 
    more » « less
  2. The ionic structure of high-pressure, high-temperature fluids is a challenging theoretical problem with applications to planetary interiors and fusion capsules. Here we report a multimessenger platform using velocimetry and angularly and spectrally resolved x-ray scattering to measure the thermodynamic conditions and ion structure factor of materials at extreme pressures. We document the pressure, density, and temperature of shocked silicon near 100 GPa with uncertainties of 6%, 2%, and 20%, respectively. The measurements are sufficient to distinguish between and rule out some ion screening models. Published by the American Physical Society2024 
    more » « less
  3. null (Ed.)
  4. null (Ed.)
  5. null (Ed.)
  6. null (Ed.)