Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
We describe a method for laser-driven planar compression of crystalline hydrogen that starts with a sample of solid para-hydrogen (even-valued rotational quantum number j) having an entropy of 0.06 kB/molecule at 10 K and 2 atm, with Boltzmann constant kB. Starting with this low-entropy state, the sample is compressed using a small initial shock (<0.2 GPa), followed by a pressure ramp that approaches isentropic loading as the sample is taken to hundreds of GPa. Planar loading allows for quantitative compression measurements; the objective of our low-entropy compression is to keep the sample cold enough to characterize crystalline hydrogen toward the terapascal range.more » « less
-
The ionic structure of high-pressure, high-temperature fluids is a challenging theoretical problem with applications to planetary interiors and fusion capsules. Here we report a multimessenger platform using velocimetry and angularly and spectrally resolved x-ray scattering to measure the thermodynamic conditions and ion structure factor of materials at extreme pressures. We document the pressure, density, and temperature of shocked silicon near with uncertainties of 6%, 2%, and 20%, respectively. The measurements are sufficient to distinguish between and rule out some ion screening models. Published by the American Physical Society2024more » « less
An official website of the United States government
